首页 | 本学科首页   官方微博 | 高级检索  
     


Inverse problem of central configurations and singular curve in the collinear 4-body problem
Authors:Zhifu Xie
Affiliation:1.Department of Mathematics and Computer Science,Virginia State University,Petersburg,USA
Abstract:
In this paper, we consider the inverse problem of central configurations of n-body problem. For a given ({q=(q_1, q_2, ldots, q_n)in ({bf R}^d)^n}), let S(q) be the admissible set of masses denoted ({ S(q)={ m=(m_1,m_2, ldots, m_n)| m_i in {bf R}^+, q}) is a central configuration for m}. For a given ({min S(q)}), let S m (q) be the permutational admissible set about m = (m 1, m 2, . . . , m n ) denoted
$S_m(q)={m^prime | m^primein S(q),m^prime not=m , {rm and} , m^prime,{rm is, a, permutation, of }, m }.$
The main discovery in this paper is the existence of a singular curve ({bar{Gamma}_{31}}) on which S m (q) is a nonempty set for some m in the collinear four-body problem. ({bar{Gamma}_{31}}) is explicitly constructed by a polynomial in two variables. We proved:
  1. (1)
    If ({min S(q)}), then either # S m (q) = 0 or # S m (q) = 1.
     
  2. (2)
    #S m (q) = 1 only in the following cases:
    1. (i)
      If s = t, then S m (q) = {(m 4, m 3, m 2, m 1)}.
       
    2. (ii)
      If ({(s,t)in bar{Gamma}_{31}setminus {(bar{s},bar{s})}}), then either S m (q) = {(m 2, m 4, m 1, m 3)} or S m (q) = {(m 3, m 1, m 4, m 2)}.
       
     
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号