首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elasto‐plastic seepage‐induced stresses due to tunneling
Authors:Jong‐Ho Shin  In‐Mo Lee  Young‐Jin Shin
Institution:1. Department of Civil Engineering, Konkuk University, Hwayang‐dong 1, Gwangjin‐gu, Seoul, Korea;2. School of Civil, Environmental and Architectural Engineering, Korea University, Anam‐dong 5‐1, Seongbuk‐gu, Seoul, KoreaProfessor.;3. Civil Works Division, Samsung Construction and Trading, Seocho‐dong, Gangnam‐gu, Seoul, Korea
Abstract:When tunneling is carried out beneath the groundwater table, hydraulic boundary is altered, resulting in seepage entering into the tunnel. The development of flow into the tunnel induces seepage stresses in the ground and the lining is subjected to additional loads. This can often cause fine particles to move, which clog the filter resulting in the long‐term hydraulic deterioration of the drainage system. However, the effect of seepage force is generally not considered in the analysis of tunnel. While several elastic solutions have been proposed by assuming seepage in an elastic medium, stress solutions have not been considered for the seepage force in a porous elasto‐plastic medium. This paper documents a study that investigates the stress behavior, caused by seepage, of a tunnel in an elasto‐plastic ground and its effects on the tunnel and ground. New elasto‐plastic solutions that adopt the Mohr–Coulomb failure criterion are proposed for a circular tunnel under radial flow conditions. A simple solution based on the hydraulic gradient obtained from a numerical parametric study is also proposed for practical use. It should be noted that the simple equation is useful for acquiring additional insight into a problem on a tunnel under drainage, because only a minimal computational effort is needed and considerable economic benefits can be gained by using it in the preliminary stage of tunnel design. The proposed equations were partly validated by numerical analysis, and their applicability is illustrated and discussed using an example problem. Comments on the tunnel analysis are also provided. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:seepage stress  elasto‐plastic behavior  tunneling  radial flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号