Abstract: | Mafic intrusive rocks (1.79–1.78 Ga) of the Transscandinavian Igneous Belt (TIB) and the c. 1.87 Ga Hedesunda Igneous Complex in the Fennoscandian Shield of south‐central Sweden were studied using whole‐rock and isotope geochemistry. Rock types vary from gabbros/norites (and leucogabbros) to quartz diorites, with Mg# between 76 and 49, and wt% SiO2 between 43.6 and 59.7, indicating some variation in evolutionary levels and variable cumulus components. Geochemical signatures are calc‐alkaline to shoshonitic, large ion lithophile elements and light rare earth elements enriched and high‐field strength elements depleted of continental‐arc type. εNd(t) ranges between +1.0 and +2.7, and 87Sr/86Sr(t) between 0.7020 and 0.7038. There is no systematic correlation between chemical parameters and isotope ratios. These isotopic data overlap with other mafic plutonic TIB rocks; samples from the Dala Province (DP) tend to overlap with the c. 1.7 Ga basic Dala lavas of TIB at slightly elevated relative Sr/Nd ratios. With two exceptions, the εNd(t) of +1 to +2 conform to an isotopically ‘mildly depleted’ source, typical for mafic TIB rocks and many Svecofennian rocks in the region. Reported values above εNd(t) +2.0 are scarce in the TIB. Mantle sources represent depleted mantle wedge material that was enriched by fluids/melts not long before (TDM c. 2.0 Ga), that is during subduction in the preceding Svecofennian (2.0–1.87 Ga) and/or during the TIB‐0&1 event (1.85–1.78 Ga). The palaeotectonic settings inferred are active continental margins; N–S‐directed convergence at 1.87 Ga and E–W‐directed at 1.79–1.78 Ga. Copyright © 2008 John Wiley & Sons, Ltd. |