首页 | 本学科首页   官方微博 | 高级检索  
     检索      

热带飑线结构和演变的数值模拟研究第一部分:云分辨模式
作者姓名:Sun Tingkai  Tan Zhemin
作者单位:Key Laboratory for Meso-scale Severe Weather/ MOE,Department of Atmospheric Sciences,Nanjing University,Nanjing 210093
基金项目:the National Natural Science Foundation of China under the grant !Nos. 49605064 and 49735180,by State Key Basic Research Prog
摘    要:利用风暴尺度、云分辨的数值模式ARPS模拟了 1993年2月 22日 TOGACOARE试验期间在赤道南太平洋观测到一次热带海洋飑线过程的发生发展过程,验证该模式的模拟热带对流系统的能力,并详细地分析了该次飑线的结构特征和动力学形成机制。通过数值敏感性试验研究了不同的云微物理过程对热带飑线的结构和发展演变过程的影响,所考虑的云微物理过程分为包含六种水相态的冰相过程和 Kessler暖雨过程。模拟结果表明,云分辨模式ARPS采用合适的物理过程可以较成功地模拟出热带飑线的三维结构及其演变过程。数值敏感性试验结果表明,在对流上升过程中,由于与冻结作用有关的冰相微物理过程能释放更多的潜热,这种潜热能产生垂直方向上的浮力梯度从而较明显地加强系统的深对流,有利于对流系统组织性的对流带的长时间维持;相比之下,暖雨过程中飑线的生命周期缩短,而系统倾斜结构更明显,层状云区的发展比较旺盛。

关 键 词:飑线  冷池  冰相微物理  云分辨模式
收稿时间:20 January 2000

Numerical simulation study for the structure and evolution of tropical squall line
Sun Tingkai,Tan Zhemin.Numerical simulation study for the structure and evolution of tropical squall line[J].Advances in Atmospheric Sciences,2001,18(1):117-138.
Authors:Sun Tingkai  Tan Zhemin
Institution:Key Laboratory for Meso-scale Severe Weather/ MOE, Department of Atmospheric Sciences,Nanjing University, Nanjing 210093,Key Laboratory for Meso-scale Severe Weather/ MOE, Department of Atmospheric Sciences,Nanjing University, Nanjing 210093
Abstract:The occurrence and evolution of an oceanic tropical squall line observed on 22 February 1993 during TOGA-COARE over the equatorial Pacific Ocean were simulated by use of a three-dimensional,nonhydrostatic storm-scale numerical model ARPS. The capacity of ARPS to simulate such tropical squall line was verified. The structure and dynamic mechanism of the squall line were discussed in details as well.The impacts of the different microphysical process that including the ice phase and warm rain schemes on structure and evolution of the squall line were investigated by the sensitive experiment.The simulations of the three-dimensional structure and evolution of the squall line are closely related with the observations when the proper microphysical processes were employed. The more latent heating released in the ice phase processes associated with the freezing process leads to strengthening deep convection due to the vertical gradient of buoyancy, which results in a long life of the convective system. In contrast, the warm rain process is characterized by short life period, more pronounced rearward tilt structure and extension of stratiform cloud.
Keywords:Squall line  Cold pool  Ice phase microphysics  Cloud-resolving model
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号