首页 | 本学科首页   官方微博 | 高级检索  
     

区域性极端低温事件的识别及其变化特征
引用本文:龚志强,王晓娟,崔冬林,王艳姣,任福民,封国林,张强,邹旭恺,王小玲. 区域性极端低温事件的识别及其变化特征[J]. 应用气象学报, 2012, 23(2): 195-204
作者姓名:龚志强  王晓娟  崔冬林  王艳姣  任福民  封国林  张强  邹旭恺  王小玲
作者单位:国家气候中心,北京 100081
基金项目:国家科技支撑计划(2007BAC29B04),公益性行业(气象)科研专项(GYHY201006021,GYHY20110 6016),国家自然科学基金项目(40930952, 40875040)
摘    要:区域性极端低温事件的客观识别方法主要包括4个部分:极端低温阈值的确定、极端低温事件空间区域的识别、空间区域的连续性过程提取和指标体系,结合个例分析验证了该方法在实际低温事件检测中的有效性。从空间分布和时间变化趋势等角度分析了近50年区域性极端低温事件的变化特征:区域性极端低温事件的发生频次较高的纬度带主要位于32°N和42°N附近,区域性极端低温事件的发生频次、强度和最大覆盖面积等存在总体减弱的趋势,在20世纪80年代后期存在显著的转折,90年代后期以来变化逐渐趋于平缓。此外,对各种单一指标与我国冷冻害造成的经济损失和受灾人口之间的相关分析,构建了体现区域性极端低温事件多方面影响的综合指标。

关 键 词:区域性极端低温事件   识别方法   综合指标   频次分布
收稿时间:2011-06-11

The Identification and Changing Characteristics of Regional Low Temperature Extreme Events
Gong Zhiqiang,Wang Xiaojuan,Cui Donglin,Wang Yanjiao,Ren Fumin,Feng Guolin,Zhang Qiang,Zou Xukai and Wang Xiaoling. The Identification and Changing Characteristics of Regional Low Temperature Extreme Events[J]. Journal of Applied Meteorological Science, 2012, 23(2): 195-204
Authors:Gong Zhiqiang  Wang Xiaojuan  Cui Donglin  Wang Yanjiao  Ren Fumin  Feng Guolin  Zhang Qiang  Zou Xukai  Wang Xiaoling
Affiliation:National Climate Center, Beijing 100081
Abstract:When an extreme low temperature event occurs,it generally impacts a certain area and lasts for some time,which means that it is a regional extreme event.How to identify a regional extreme low temperature is the basis for studies in this area.An objective identification technique for regional low temperature extreme events(OITRLTE) is developed.This technique consists of four parts:Defining the threshold value of extreme low temperature for single station;identifying abnormality belts;distinguishing temporal continuous process of the event;an integrated index system.The index is specially developed based on the features of regional events,which includes 5 single indices:Extreme intensity,accumulated intensity,accumulated area,maximum impacted area and duration,as well as an integrated index.Case studies show that OITREE is skillful in identifying regional low temperature extreme events(RLTEs).It can objectively and automatically capture daily impacted areas of a regional event for its duration,and reasonably putting them in a "string" to shape an entire regional event.Then based on the winter daily minimum temperature from 1960 to 2009,spatial distribution and temporal changes of RLTEs is also investigated.Results show that probability distribution of lowest temperature and latitude of geometrical center of RLTEs both obey the two-peak distribution,and the center of RLTEs mainly locates at two belts of 32°N and 42°N. The annual accumulative value of the frequency,intensity and max covering area of RLTEs is decreasing, and during the end of 1980s this trend changes and the trend becomes stationary after 1990s.These characteristics might be caused by the RLTEs with long duration and wide space range that accounted for top 10%of all events.Considering the good correlation between RLTE indexes,economic loss and the number of stricken people on cold disasters,an integration index is defined based on RLTE indexes.The weighted coefficients of the first-grade integrated index are defined based on the correlation between the yearly cumulative value of first-grade index,the corresponding yearly index of economic losses and the number of stricken people on cold disasters.So,in this way the weight coefficients denote the correlation between regional low temperature extreme events and corresponding disaster losses to some extent.
Keywords:regional low temperature extreme events   objective identification technique   integration index   probability distribution
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号