首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genesis of the Sb-W-Au deposits at Ixtahuacan,Guatemala: evidence from fluid inclusions and stable isotopes
Authors:N Guillemette  A E Williams-Jones
Institution:(1) Department of Geological Sciences, McGill University, H3A 2A7 Montréal, Québec, Canada
Abstract:The Ixtahuacan Sb-W deposits are hosted by upper Pennsylvanian to Permian metasedimentary rocks of the central Cordillera of Guatemala. The deposits consist of gold-bearing arsenopyrite, stibnite and scheelite. Arsenopyrite and scheelite are early in the paragenesis, occurring as disseminations in pyritiferous black shale/sandstone and in argillaceous limestone, respectively. Some stibnite is disseminated, but the bulk of the stibnite occurs as massive stratabound lenses in black shales and in quartz-ankerite veins and breccias, locally containing scheelite.Microthermometric measurements on fluid inclusions in quartz and scheelite point to a low temperature (160–190°C) and low to moderate salinity (5–15 wt% NaCl eq.) aqueous ore fluid. Abundant vapour-rich inclusions suggest that the fluid boiled. Carbon dioxide was produced locally as a result of interaction of the aqueous fluid with the argillaceous limestone. Bulk leaching experiments and SEM-EDS analyses of decrepitated fluid inclusion residues indicate that the ore-bearing solution was NaCl-dominated. The delta18O values of quartz, ankerite and scheelite from mineralized veins range from 19.7 to 20.5permil, 18.1 to 20.0permil and 7.0 to 8.4permil respectively. The average temperature calculated from quartz-scheelite oxygen isotopic fractionation is 170°C. The oxygen isotopic composition of the fluid, interpreted to have been in equilibrium with these minerals, ranged from 5.7 to 7.6permil, and is considered to represent an evolved meteoric water. Diagenetic or syngenetic pyrite has a sulphur isotopic composition of 0.5±0.3permil which is consistent with bacterial reduction of sulphate. The delta34S values of arsenopyrite and stibnite range from –2.8 to 2.0permil and –2.7 to –2.3permil respectively, and are though to reflect sulphur derived from pyrite.The Ixtahuacan deposits are interpreted to have formed at low temperature (<200°C) and a depth of a few hundred metres from a low fO2 (10–49–10–57), high pH (7–8) fluid. Arsenic was probably transported as arsenious acid, antimony and gold as thio-complexes and tungsten as the complex HWO 4 .A model is proposed in which a meteoric fluid, heated by a felsic intrusion at depth, was focused to shallow levels along faults. The interaction of the fluid with pyritiferous beds caused the deposition of arsenopyrite as a result of sulphidation and/or decreasing fO2; gold probably co-precipitated with As or was adsorbed onto the arsenopyrite. The precipitation of stibnite was caused by boiling. Scheelite deposited in response to the increase in Ca2+ activity which accompanied interaction of the ore fluid with the argillaceous limestones.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号