Abstract: | In order to secure the necessary image acquisitions for global agricultural monitoring applications, we must first articulate Earth observation (EO) requirements for diverse agricultural landscapes and cropping systems. Crucial to this task is the identification of agricultural growing season timing at a meaningful spatial scale, so as to better define the necessary periods of image acquisition. To this end, 10 years of MODIS Terra Surface Reflectance imagery have been used to determine phenological transition dates including start of season, peak period, and end of season at 0.5° globally. This is the first set of global, satellite-derived, cropland-specific calendar dates for major field crops within a 0.5°, herein called agricultural growing season calendars Preliminary comparison against ground-based crop-specific calendars is performed, highlighting the utility of this approach for articulating growing season timing and its interannual and within-region variability. This research provides critical inputs for defining the EO requirements for the Global Agricultural Monitoring initiative (GEOGLAM), an effort by the Group on Earth Observations (GEO) to synergize existing national and regional observation systems for improved agricultural production and food security monitoring. |