首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mapping salt diapirs and salt diapir-affected areas using MLP neural network model and ASTER data
Abstract:Abstract

This study employs visible-near infrared and short wave infrared datasets of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to map salt diapirs and salt diapir-affected areas using Multi-Layer Perceptron (MLP) in the Zagros Folded Belt, Iran, and introduces the role of earth observation technology and a type of digital earth processing in lithological mapping and geo-environmental impact assessment. MLP neural network model with several learning rates between 0.01 and 0.1 was carried out on ASTER L1B data, and the results were compared using confusion matrices. The most appropriate classification image for L1B input to MLP was produced by learning rate of 0.01 with Kappa coefficient of 0.90 and overall accuracy of 92.54%. The MLP result of input data set mapped lithological units of salt diapirs and demonstrated affected areas at the southern and western parts of the Konarsiah and Jahani diapirs, respectively. Field observations and X-ray diffraction analyses of field samples confirmed the dominant mineral phases identified remotely. It is concluded that MLP is an efficient approach for mapping salt diapirs and salt-affected areas.
Keywords:remote sensing  digital earth  digital image classification  MLP neural network  lithological mapping  salt diapir  ASTER  Zagros  Iran  Geology  image processing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号