首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping
Abstract:ABSTRACT

This study investigates misregistration issues between Landsat-8/ Operational Land Imager and Sentinel-2A/ Multi-Spectral Instrument at 30?m resolution, and between multi-temporal Sentinel-2A images at 10?m resolution using a phase-correlation approach and multiple transformation functions. Co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation proved to be a robust approach that allowed us to identify hundreds and thousands of control points on images acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 30?m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10?m resolution between multi-temporal Sentinel-2A images from the same and different orbits, respectively, were observed. The non-linear random forest regression used for constructing the mapping function showed best results in terms of root mean square error (RMSE), yielding an average RMSE error of 0.07?±?0.02 pixels at 30?m resolution, and 0.09?±?0.05 and 0.15?±?0.06 pixels at 10?m resolution for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple conditions. A simpler 1st order polynomial function (affine transformation) yielded RMSE of 0.08?±?0.02 pixels at 30?m resolution and 0.12?±?0.06 (same Sentinel-2A orbits) and 0.20?±?0.09 (adjacent orbits) pixels at 10?m resolution.
Keywords:Sub-pixel co-registration  phase correlation  misregistration  Landsat-8  Sentinel-2  machine learning  random forest
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号