首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The cosmogonic shadow effect
Authors:Michel Azar  William B Thompson
Institution:1. Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
2. Department of Physics, University of California, San Diego, La Jolla, CA, USA
Abstract:We consider the Alfvén-Arrhenius fall-down mechanism and describe an approximate model for the infall, capture and distribution of dust particles on a given magnetic field line and their possible neutralization at the ‘2’/3 points, the points at which the field aligned compnents of the gravitational and centrifugal forces are equal and opposite. We find that a small fraction (<10%) of an incoming particle distribution will actually contribute to the above ‘2’/3 fall-down process. We also show that if at the 2/3 points, the ratio of dust to plasma density is $$\frac{{n_D \left( {\tfrac{2}{3}} \right)}}{{n_p \left( {\tfrac{2}{3}} \right)}} > \frac{{10^{ - 3} }}{{r_{g_\mu } T_{eV} }}$$ . (r gμ=radius of a grain in microns,T=plasma temperature in eV), then the dust particles will lose their charge, decouple from the field line and follow Keplerian orbits in accordance with the Alfvén-Arrhenius mechanism. We then determine the limits on the plasma parameters in order that rotation of a quasi-neutral plasma in thermal equilibrium be possible in the gravitational and dipole field of a rotating central body. The constraints imposed by the above conditions are rather weak, and the plasma parameters can have a wide range of values. For a plasma corotating with an angular velocity Ω~10?4s?1, we show that the plasma temperature and density must satisfy $$10^{ - 1}<< T_{(eV)}<< 10^2 ,10T_{eV}^2<< n^p \left( {cm^3 } \right)<< 10^6 $$ .
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号