首页 | 本学科首页   官方微博 | 高级检索  
     


A one-dimensional model for the parameterization of deep convection in the ocean
Affiliation:1. Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China;2. Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh NC 27695, USA
Abstract:A one-dimensional penetrative plume model has been constructed to parameterize the process of deep convection in ocean general circulation models (OGCMs). This research is motivated by the need for OGCMs to better model the production of deep and intermediate water masses. The parameterization scheme takes the temperature and salinity profiles of OGCM grid boxes and simulates the subgrid-scale effects of convection using a one-dimensional parcel model. The model moves water parcels from the surface layer down to their level of neutral buoyancy, simulating the effect of convective plumes. While in transit, the plumes exchange water with the surrounding environment; however, the bulk of the plume water mass is deposited at e level of neutral buoyancy. Weak upwelling around the plumes is included to maintain an overall mass balance. The process continues until the negative buoyant energy of the one-dimensional vertical column is minimized. The parameterized plume entrainment rate, which plays a central role in the parameterization, is calculated using modified equations based on the physics of entraining buoyant plumes. This scheme differs from the convective adjustment techniques currently used in OGCMs, because the parcels penetrate downward with the appropriate degree of mixing until they reach their level of neutral stability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号