Experimental evaluation of shear strength behaviour of plastic and non-plastic silts |
| |
Authors: | A. Usmani K.G. Sharma A. Nanda |
| |
Affiliation: | 1. Sub-Surface Projects Divison, Engineers India Limited, New Delhi, India;2. Department of Civil Engineering, Indian Institute of Technology, New Delhi, India |
| |
Abstract: | Silt is available in many parts of the world in combination with sands and clays. However, due to lack of clear understanding of its engineering behaviour, most of the time it is interpreted in terms of either sands or clays. Structures that are usually built on silty soils are designed to take into account design procedures developed for sandy or clayey soils. Presence of silts in combination with varying amount of sand and clays produces silt that is either plastic or non-plastic in nature. Silt is available in and around the Delhi region, in a majority mixture along with fine sands, which is non-plastic in nature. On the other hand silty deposits found in offshore Bombay High region are found in abundance along with significant amounts of clays and are termed as plastic silts. In this paper a comparison of the stress-strain behaviour of plastic and non-plastic silts is carried out under triaxial compression loading during both drained and undrained conditions. Two representative samples each from Delhi and Bombay High regions were considered for this comparison and results of stress-strain under four sets of confining pressure are discussed in detail. It is observed from this study that behaviour of silts is mainly dependent on the composition and structure of the resultant soil matrix. It is concluded from the results that shear strength parameters as well as volume change/pore pressure response of silty soils is dominated by the constituent soil present along with the silt. It is seen from the comparative behaviour of non-plastic and plastic silts that the presence of sand and clays has a governing effect on pore pressure development and the resultant friction angle. The study also corroborated that the nature of silt is transitional both in the case of plastic and non-plastic forms. |
| |
Keywords: | silts clays sands plastic non-plastic transitional |
|
|