首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of tidally induced eddies in the Bungo Channel: A possible role for sporadic Kuroshio-water intrusion (kyucho)
Authors:Taira Nagai  Toshiyuki Hibiya
Affiliation:1. Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
Abstract:It is well known that the sudden intrusion of Kuroshio warm water into the Bungo Channel (kyucho) is regulated by spring–neap tidal forcing. In order to clarify the physical background behind this regulation, numerical experiments are carried out using a high-resolution non-hydrostatic three-dimensional model. We first reproduce the strong mixing region off the east coast of the Bungo Channel resulting from tidal flow interaction with complicated land configurations during spring tides; behind islands and headlands, small-scale eddies satisfying an approximate cyclostrophic balance are generated. As a result, averaged over the whole model domain, the tidal-mean energy dissipation rate reaches ≈1.6?×?10?6?W?kg?1. The model predicted energy dissipation rates at the location and times of direct microstructure measurements in the Bungo Channel are comparable to the observed values. We next examine whether or not strong tidal mixing thus reproduced can inhibit the northward intrusion of Kuroshio warm water in the Bungo Channel. It is shown that the Kuroshio warm water can (or cannot) pass through the tidal mixing regions off the east coast of the Bungo Channel during periods of weakened (or enhanced) tidal mixing at neap (or spring) tides. This indicates that taking into account the realistic spring–neap modulation of tidal mixing intensity is indispensable to further increase the ability of the existing forecast system for kyucho in the Bungo Channel.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号