首页 | 本学科首页   官方微博 | 高级检索  
     

应用一种改进BP神经网络算法预测密度曲线
引用本文:张赛民,周竹生,陈灵君. 应用一种改进BP神经网络算法预测密度曲线[J]. 物探化探计算技术, 2007, 29(6): 497-500
作者姓名:张赛民  周竹生  陈灵君
作者单位:1. 中南大学,信息物理工程学院,长沙,410083
2. 中石化中南分公司研究院,长沙,410007
摘    要:利用测井数据与地震数据二者相结合进行综合分析,是地震勘探工作者的重要工作。可以通过分析井位处的地震数据与测井数据,提取地震的多个属性,建立一个与测井属性的统计关系。选取已改进的三层网络结构BP神经网络算法,在应用一个实际例子后表明,该算法的主要特点是收敛速度快、计算简单,同时还具有跳出局部最小的能力。应用此神经网络算法对某油田的二维地震数据进行了处理,提取了多种地震属性,并在井位置建立了地震属性与密度曲线的非线性关系,成功预测了剖面密度曲线,为了解储层状况提供了有益的资料。

关 键 词:改进BP神经网络  地震属性  密度曲线
文章编号:1001-1749(2007)06-0497-04
修稿时间:2007-01-21

Density log prediction by using an improved BP neural network
ZHANG Sai-min,ZHOU Zhu-sheng,CHEN Ling-jun. Density log prediction by using an improved BP neural network[J]. Computing Techniques For Geophysical and Geochemical Explorationxploration, 2007, 29(6): 497-500
Authors:ZHANG Sai-min  ZHOU Zhu-sheng  CHEN Ling-jun
Abstract:One of important works of seismologist is the integration of well-log and seismic data. We can derive the relationship between seismic data and well-log by analyzing training data at the position of well. The statistical relation will be constructed by extracting seismic data attributes to predict logs. This paper chooses an improved BP neural network with a three-layers structure. An example shows that the features of the network algorithm are of rapid speed, mathematical simplicity and ability of avoiding local minima. Applying this network to one 2-D seismic data section at practice,density log is predicted successfully by constructing the nonlinear relation between extracted seismic multi-attribute and log, which greatly benefit our understanding of the reservoirs.
Keywords:improved BP network  seismic attribute  density log
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号