首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mineral Surface after Reaction with Aqueous Solution at High Temperatures and Pressures
Authors:ZHANG Xuetong  ZHANG Ronghu  HU Shumin and YU WenbinOpen Research Laboratory of Geochemical Kinetics  Chinese Academy of GeologicalSciences  Baiwanzhuang Roa  Beijing
Abstract:This work presents new experimental results on surface chemistry of reacting minerals and interface kinetics between mineral and aqueous solutions. These experiments were carried out using a flow reactor (packed bed reactor) of an open system as well as a continuous stirred tank reactor, CSTR. The authors measured reaction rates of such minerals as zeolite, albite and carbonate (rhodochrosite, dolomite) in various solutions, and tested corresponding mineral surface by using SEM, XPS, SIMS, etc. This paper mainly presents the experimental results of zeolite dissolution in water and in low pH solutions at room temperature, and dolomite dissolution at elevated temperatures. The results show that the release rates of Si, Al and Na of zeolite are different in most cases. The incongruent dissolution of zeolite is related to surface chemical modifications. The Na, Al and Si release rates for dissolution of albite and zeolite in water and various solutions were measured as a function of temperature, flow velocity, pH and solution composition in the reaction system. In most cases, dissolutions of both albite and zeolite are incongruent. Dissolution of dolomite is also incongruent in most cases and varied with T, pH, and nature of aqueous solutions. For dolomite dissolution, the release rates of Mg are less than those of Ca at high temperatures as T increases from 25 to 300°C. SIMS study indicates that the contents of Al, Na and Si in the leached layer of zeolite or albite surface, change with the distance from the surface, exhibiting a non‐linear behaviour within a thickness range of 1000%. The distributions of Ca, Mg, Mn, H and Cl in the leached surface layer of carbonate have a non‐linear behaviour too.
Keywords:mineral surface  kinetics  liquid/solid interface  reaction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号