首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Arctic oscillation and the interannual variability of dust emissions from the Tarim Basin: a TOMS AI based study
Authors:Hang Gao  Richard Washington
Institution:1. Risk Management Solutions, Peninsular House, 30 Monument Street, London, EC3R-8NB, UK
2. Oxford University Centre for the Environment, South Parks Rd, Oxford, OX1-3QY, UK
Abstract:This paper examines the teleconnection between the Arctic Oscillation Index (AO) and dust activities in the Tarim Basin in terms of the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) level]. In this study, High Dust Active years (H) and Low Dust Active years (L) in terms of dust loading are identified. Composites of geopotential height at both 850 and 500 hPa level show that, the geopotential height level of H years is generally lower than the average, especially over the south end of the Central Siberian Plateau. The geopotential height level of L years is generally higher than the average, especially over the same region of Siberia. By correlating the AO and TOMS AI with geopotential height at different pressure levels, a South Siberia Geopotential Height Index (SSGI) is constructed. A strong positive correlation is found between AO and SSGI. Strong negative correlations are found between TOMS AI and AO, and between TOMS AI and SSGI. Through investigating the relation among these three measures (TOMS AI, AO and SSGI), we found that in the positive phase of AO, geopotential gradient between the inside and outside of the basin is small. The northerly wind from Siberia is weak and decreases when it encounters the north barrier of the basin. As a result, dust activities in the Tarim Basin is weak and Eddy Kinetic Energy (EKE) level measured in the basin is lower. In the negative phase of AO, geopotential gradient between the inside and outside of the basin is big. The northerly wind from Siberia is strong, and passes the north barrier of the basin. When it encounters the Tibetan Plateau, a component of the wind goes into the basin. During this process, the wind accelerates given the higher pressure gradient. As a result, dust activities in the Tarim Basin are frequent and intensive, and the EKE level in the basin is higher.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号