首页 | 本学科首页   官方微博 | 高级检索  
     

基于高光谱技术的黑土地微量金属元素探测方法及地学意义
引用本文:王建华,左玲,李志忠,穆华一,周萍,杨佳佳,赵英俊,秦凯. 基于高光谱技术的黑土地微量金属元素探测方法及地学意义[J]. 地质力学学报, 2021, 27(3): 418-429. DOI: 10.12090/j.issn.1006-6616.2021.27.03.038
作者姓名:王建华  左玲  李志忠  穆华一  周萍  杨佳佳  赵英俊  秦凯
作者单位:中国科学院空天信息创新研究院, 北京 100101;国际黑土地协会, 辽宁 沈阳 110034;中国地质大学(北京) , 北京 100083;中国地质调查局西安地质调查中心, 陕西 西安 710054;中国地质调查局沈阳地质调查中心, 辽宁 沈阳 110034;核工业北京地质研究院遥感信息与图像分析技术国家级重点实验室, 北京 100029
基金项目:中国地质调查局地质调查项目(DD20190316);国际地学计划项目(IGCP-665)
摘    要:在土壤中重金属含量较低的情况下,重金属的高光谱特征响应非常微弱,不易构建精确的高光谱直接反演模型.为了解决上述问题,依据土壤化学变量间的理化性质,将重金属富集特征转移到与之相关的化学主量元素上,使重金属微弱的信息得以间接定量反演.文中以海伦市黑土土壤为研究对象,通过主成分分析、 聚类分析确定了主量元素氧化铁(Fe2O3...

关 键 词:重金属  土壤  赋存关系  高光谱  地球化学  非线性拟合模型  间接预测  神经网络
收稿时间:2021-02-09
修稿时间:2021-05-10

A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications
WANG Jianhu,ZUO Ling,LI Zhizhong,MU Huayi,ZHOU Ping,YANG Jiaji,ZHAO Yingjun,QIN Kai. A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications[J]. Journal of Geomechanics, 2021, 27(3): 418-429. DOI: 10.12090/j.issn.1006-6616.2021.27.03.038
Authors:WANG Jianhu  ZUO Ling  LI Zhizhong  MU Huayi  ZHOU Ping  YANG Jiaji  ZHAO Yingjun  QIN Kai
Affiliation:Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China;International Black Soil Society, Shenyang 110034, Liaoning, China;China University of Geosciences (Beijing), Beijing 100083, China;Xi''an Center of China Geological Survey, Xi''an 710054, Shannxi, China;Shenyang Center of China Geological Survey, Shenyang 110034, Lianing, China;National Key Laboratory of Remote Sensing Information and Imagery Analyzing Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
Abstract:In the case of low content of heavy metals in soil, the hyperspectral characteristic response of heavy metals is very weak, so it is difficult to construct an accurate direct hyperspectral inversion model. In order to solve the above problems, according to the physical and chemical properties of soil chemical variables, the enrichment characteristics of heavy metals are transferred to the related major chemical elements, so that the weak information of heavy metals can be indirectly quantitatively inverted. In this paper, the black soil in Hailun was taken as the research object. Through principal component analysis and cluster analysis, it was confirmed that there was an obvious adsorption occurrence relationship between the major element iron oxide (Fe2O3) and trace heavy metals As, Zn, Cd. The best inversion model of iron oxide content in the study area was established by partial least square method (the determination coefficient is 0.704, the root mean square difference is 0.148, and the F-test is 12.732). Based on the occurrence relationship between iron oxide and As, Zn, CD, a nonlinear fitting model between the predicted value of iron oxide and the real value of heavy metals was constructed by neural network. The fitting results show that the fitting degree of As, Zn and Cd is As>Zn>Cd. The overall correlations are 0.796, 0.732, 0.530 respectively. The study results show that the indirect prediction model based on iron oxide content can better quantitatively predict As, Zn and Cd, which provides a new method for the quantitative analysis of trace heavy metal content. This model provides a basis for hyperspectral remote sensing technology to predict soil heavy metal content, enhances the feasibility of soil trace heavy metal inversion, and is helpful to refine the quality monitoring of natural resource. It is of great significance to deepen the comprehensive analysis and evaluation of geoscience system.
Keywords:heavy metal  soil  occurrence relationship  hyperspectral  geochemistry  nonlinear fitting model  indirect prediction  neural networks
本文献已被 万方数据 等数据库收录!
点击此处可从《地质力学学报》浏览原始摘要信息
点击此处可从《地质力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号