首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Relationship between Skewness and Kurtosis of A Diffusing Scalar
Authors:Email author" target="_blank">T?P?SchopflocherEmail author  P?J?Sullivan
Institution:(1) Department of Applied Mathematics, The University of Western Ontario, London, Canada
Abstract:It has been demonstrated that in turbulent dispersion, there exists a quadratic relationship between the skewness (S) and kurtosis (K) statistics obtained from continuous, elevated sources of scalar contaminant released into both convective and stable atmospheric boundary layers. Specifically, one observes that $$K = A S^2 + B,$$ where A and B are empirically fitted constants that depend on the flow. For two reasons, this is potentially useful information in regard to modelling the probability density function (PDF) of a diffusing scalar. First, since many PDFs have a signature relationship between their skewness and kurtosis, candidate models can immediately be either accepted or rejected depending upon whether they conform to the quadratic curve that is observed experimentally. Second, if one intends to model the PDF by inverting a limited number of moments, the task is reduced when there is a functional relationship between the standardized third and fourth moments. The aforementioned relationship has been corroborated by others who have examined data over a wide range of experimental configurations. However, from one flow to another, there appears to be a non-negligible variability in the two fitting constants of the quadratic curve. In this paper we put forth a framework to help explain this phenomenon, and we also attempt to predict how these parameters vary in space and/or time. Our point is illustrated with well-resolved data from a wind-tunnel, grid-turbulence, plume experiment.
Keywords:Concentration  Kurtosis  Probability density  Skewness  Turbulent diffusion  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号