首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Global and regional coupled climate sensitivity to the parameterization of rainfall interception
Authors:Jiafu Mao  Andrew J Pitman  Steven J Phipps  Gab Abramowitz  YingPing Wang
Institution:1. Climate Change Research Centre, The University of New South Wales, Red Centre Building, Sydney, NSW, 2052, Australia
2. CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
Abstract:A coupled land?Catmosphere model is used to explore the impact of seven commonly used canopy rainfall interception schemes on the simulated climate. Multiple 30-year simulations are conducted for each of the seven methods and results are analyzed in terms of the mean climatology and the probability density functions (PDFs) of key variables based on daily data. Results show that the method used for canopy interception strongly affects how rainfall is partitioned between canopy evaporation and throughfall. However, the impact on total evaporation is much smaller, and the impact on rainfall and air temperature is negligible. Similarly, the PDFs of canopy evaporation and transpiration for six selected regions are strongly affected by the method used for canopy interception, but the impact on total evaporation, temperature and precipitation is negligible. Our results show that the parameterization of rainfall interception is important to the surface hydrometeorology, but the seven interception parameterizations examined here do not cause a statistically significant impact on the climate of the coupled model. We suggest that broad scale climatological differences between coupled climate models are not likely the result of how interception is parameterized. This conclusion is inconsistent with inferences derived from earlier uncoupled simulations, or simulations using very simplified climate models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号