首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Discrete Element Modeling of Stick-Slip Instability and Induced Microseismicity
Authors:Cyrus Khazaei  Jim Hazzard  Rick Chalaturnyk
Abstract:Using Particle Flow Code, a discrete element model is presented in this paper that allows direct modeling of stick-slip behavior in pre-existing weak planes such as joints, beddings, and faults. The model is used to simulate a biaxial sliding experiment from literature on a saw-cut specimen of Sierra granite with a single fault. The fault is represented by the smooth-joint contact model. Also, an algorithm is developed to record the stick-slip induced microseismic events along the fault. Once the results compared well with laboratory data, a parametric study was conducted to investigate the evolution of the model’s behavior due to varying factors such as resolution of the model, particle elasticity, fault coefficient of friction, fault stiffness, and normal stress. The results show a decrease in shear strength of the fault in the models with smaller particles, smaller coefficient of friction of the fault, harder fault surroundings, softer faults, and smaller normal stress on the fault. Also, a higher rate of displacement was observed for conditions resulting in smaller shear strength. An increase in b-values was observed by increasing the resolution or decreasing the normal stress on the fault, while b-values were not sensitive to changes in elasticity of the fault or its surrounding region. A larger number of recorded events were observed for the models with finer particles, smaller coefficient of friction of the fault, harder fault surroundings, harder fault, and smaller normal stress on the fault. The results suggest that it is possible for the two ends of a fault to be still while there are patches along the fault undergoing stick-slips. Such local stick-slips seem to provide a softer surrounding for their neighbor patches facilitating their subsequent stick-slips.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号