首页 | 本学科首页   官方微博 | 高级检索  
     


Possible lunar ring dikes
Authors:Winifred Sawtell Cameron  Joe L. Padgett
Affiliation:1. Goddard Space Flight Center, National Space Science Data Center, Greenbelt, Md., USA
2. Dept. of Chemistry, Prince Georges Community College, Largo, Md., USA
Abstract:Terrestrial ring dike structures are features consisting of one or more series of concentric fracture systems along which the central block often subsided and up through which lavas intruded and extruded and other volcanic features formed. Before the lunar probe satellites, a search for lunar features that showed characteristics of terrestrial ring dikes was conducted using the LAC charts andKuiper Atlas photographs. More recently the search was extended on the nearside features and to the farside features using the Lunar Orbiter series of photographs resulting in a catalog of 559 nearside candidates and 82 farside. Features exhibiting one or more of the following four criteria were included as lunar analogs to terrestrial ring dikes: (1) inner ridge(s) approximately concentric with the crater wall, (2) inner rill(s) approximately concentric with the crater wall, (3) outer ridge(s) and/or rill(s) approximately concentric with the crater wall, and (4) interior and exterior slopes of the crater wall approximately equal (implying extrusion of lava along a ring fracture). Equal slopes are in contradistinction to a central source eruptive feature or an impact feature both of which usually produce craters with walls whose inner slopes are about twice as steep as their outer flanks, which characterize the vast majority of lunar craters. Features exhibiting each of the four criteria were found and some had combinations of two or more including rills merging into ridges, e.g., in Taruntius and Posidonius. Gambart is an example of equal inner and outer slopes, while Hesiodus A and Marth are two of the best examples of complete inner rings concentric with the outer rings. Ten percent of the candidates were probable impact craters but had subsequent volvanic activity of a ring dike nature. The initial search showed a distribution of the possible lunar ring dikes that was non-random and strongly associated with the margins of the maria, further implying that they are volcanic features. This relation was upheld when extended by the recent survey. The anticipated dearth of farside ring dikes was corroborated in our study and their distribution is restricted to those few mare-like areas on the farside, further supporting the volcanic nature of these features
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号