首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The relationship between phytolith- and plant-water δO values in grasses
Authors:Elizabeth A Webb  Fred J Longstaffe
Institution:1 Department of Earth Sciences, The University of Western Ontario, London, Ontario N6A 5B7, Canada
Abstract:Information regarding climatic conditions during plant growth is preserved by the oxygen-isotope composition of biogenic silica (phytoliths) deposited in grasses. The O-isotope compositions of phytoliths and the plant water from which they precipitate are dependent on soil-water δ18O values, relative humidity, evapotranspiration rates, and temperature. Plant water and phytoliths from two grass species, Ammophila breviligulata (C3) and Calamovilfa longifolia (C4) at Pinery Provincial Park in southwestern Ontario, Canada, were examined to determine the variability in their δ18O values. Stem water was unfractionated from soil-water in oxygen isotopic composition and the δ18O values of stem silica provide a good proxy for the soil water available to roots during the growing season. Greater spatial and temporal variation in the δ18O values of water in the top 5 cm of the soil, and their enhanced sensitivity to evaporative 18O enrichment, are reflected in the generally higher δ18O values of water in the shallow roots and rhizomes of these grasses. Water within the sheath and lower and upper leaf tissues experiences continual evaporation, becoming progressively enriched in 18O as it moves towards the tip of the leaf. However, the water from which leaf silica precipitates has not acquired the extreme 18O enrichment predicted using steady-state models, or measured for midday or average daily leaf water. Possible explanations for this behaviour include preferential deposition of silica at night; the existence of a secluded water fraction within the leaf, which experiences smaller diurnal variations in isotopic composition than leaf water at sites of evaporation; kinetic isotope effects during rapid precipitation of leaf silica; and incomplete exchange between the oxygen in the silicic acid and the leaf water.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号