首页 | 本学科首页   官方微博 | 高级检索  
     


Assessment of CMIP3 climate models and projected changes of precipitation and temperature in the Yangtze River Basin, China
Authors:Hui Tao  Marco Gemmer  Jiahu Jiang  Xijun Lai  Zengxin Zhang
Affiliation:1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
2. National Climate Center, China Meteorological Administration, Beijing, 100081, China
3. State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, Hohai University, Nanjing, 210098, China
Abstract:The projected changes of precipitation and temperature in the Yangtze River Basin in the 20th Century from 20 models of the CMIP3 (phase 3 of the Coupled Model Inter-comparison Project) dataset are analyzed based on the observed precipitation and temperature data of 147 meteorological stations in the Yangtze River Basin. The results show that all models tend to underestimate the annual mean temperature over the Yangtze River Basin, and to overestimate the annual mean precipitation. The temporal changes of simulated annual mean precipitation and temperature are broadly comparable with the observations, but with large variability among the results of the models. Most of the models can reproduce maximum precipitation during the monsoon season, while all models tend to underestimate the mean temperature of each month over the Yangtze River Basin. The Taylor diagram shows that the differences between modeled and observed temperature are relatively smaller as compared to differences in precipitation. For a detailed investigation of regional characteristics of climate change in the Yangtze River Basin during 2011–2050, the multi-model ensembles produced by an upgraded REA method are carried out for more reliable projections. The projected precipitation and temperature show large spatial variability in the Yangtze River Basin. Mean precipitation will increase under the A1B and B1 scenarios and decrease under the A2 scenario, with linear trends ranging from ?21 to 28.5?mm/decade. Increasing mean temperature can be found in all scenarios with linear trends ranging from 0.15 to 0.48°C/decade. Grids in the head region of the Jingshajiang catchment show distinct increasing trends for all scenarios. Some physical processes associated with precipitation are not well represented in the models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号