首页 | 本学科首页   官方微博 | 高级检索  
     


Geochemical characterisation of organic matter in Keg River Formation (Elk point group, Middle Devonian), La Crete Basin, Western Canada
Authors:Heather Clegg   Brian Horsfield   Lavern Stasiuk   Martin Fowler  Manfred Vliex
Abstract:Carbonates from the Keg River Formation, La Crete Basin, Alberta, western Canada were examined in order to define: (a) oil source rock potential; (b) bulk maceral composition; (c) extract yield; and finally (d) facies variations using PY-GC-MS. Thirty samples from 6 different wells were examined from the lower Keg River member and 4 from the upper Keg River member using conventional geochemical methods. As maturity differences are absent within the sample set, variations in TOC, Tmax, hydrogen index, organic petrography and extract yields are caused by variability in organic matter input, which is revealed by molecular characterisation using PY-GC-MS. Lower Keg River member bituminous wackestones are excellent potential source rocks containing Types I–II and Type II organic matter. Types I–II organic matter contains large well preserved (up to 200μm in diameter) thick-walled Tasmanites (10–15% of sample) and akinete algal cells indicative of algal blooms within an amorphous bituminite. Type II organic matter contains a higher proportion of degraded alginites/bituminite relative to well-preserved alginites. Extract yields (mg/g TOC) were seen to increase from Types I–II to Type II organic matter. PY-GC-MS revealed that 1,2,3,4-tetramethylbenzene was a major peak in most samples. This is a pyrolysis product arising from β-cleavage of C40 diaromatic carotenoids incorporated within the kerogen during diagenesis. The source of this compound is thought to be from an unknown diaromatic compound with a 2,3,6-/3,4,5-trimethyl substitution pattern and isorenieratene, which is specific to photosynthetic green sulphur bacteria (Chlorobiaceae) suggesting that the photic zone was at least partially anoxic during deposition of these samples. The relative abundance of this compound/n-C11-alkene and organic sulphur (calculated from the thiophene ratio) both increase from Types I–II to Type II organic matter. This trend was grossly similar to the trend seen in the variability of extract yield with hydrogen index. A similar trend for HI and Tmax indicates samples containing a higher proportion of degraded alginites/bituminite relative to well-preserved alginite are more labile than Type I–II organic matter. Upper Keg River member marls contain Type II organic matter, which is characterised by heavily degraded algal material within a bituminous groundmass. Pyrolysates of two of the marl samples contain only low amounts of 1,2,3,4-tetramethylbenzene, in contrast to the bituminous wackestones, indicating that the depositional environment/source input was different during deposition of the marl samples. Although both marls contain similar organic matter, their pyrolysates were significantly different. One marl (1141.9 m) was highly paraffinic containing dominantly short-chain alkene/alkane doublets, while the other marl (1137.6 m) contained a bimodal n-alkane/alkene distribution and high amounts of alkylphenols, which may be derived from preservation of resistant algal polyphenolic molecules or suggest a terrestrial input.
Keywords:Middle Devonian   Keg River Formation   organic facies   depositional environment   bacteria   organic sulphur   akinete cells   algal blooms   PY-GC-MS   1   2   3   4   -tetramethylbenzene   isorenieratene   alkylphenols   alkylthiophenes   alkylbenzenes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号