首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluctuational mechanism for the formation of proton vortices in the superfluid core of neutron stars
Authors:K M Shahabasyan  M K Shahabasyan
Institution:(1) Erevan State University, Armenia
Abstract:The Gibbs thermodynamic potential of a proton vortex interacting with the normal core of a neutron vortex of radius r << λ (λ is the penetration depth) that is parallel to it and has an outer boundary of radius b is calculated. It is shown that, under this assumption, the capture of only one vortex by the core is energetically favorable. The force acting on the proton vortex owing to the entrained current is found and it is always directed toward the core. The corresponding force for a proton antivortex is directed toward the outer boundary of the neutron vortex. The Ginzburg-Landau equation is solved for a vortex-antivortex system and its Gibbs function is calculated. It is shown that at large distances from the core, vortex-antivortex pairs can form because of fluctuations. Acted on by the entrainment current, the antivortex moves outward, while the vortex stays inside the neutron vortex. It is shown that the best conditions for fluctuational pair production, followed by separation, exist near the outer boundary. It is shown that new proton vortices can develop only in a region where the entrainment magnetic field strength H (ρ) > HC1 (HC1 is the lower critical field). __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 139–149 (February 2008).
Keywords:stars  neutron  superfluid core
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号