首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA
Authors:H Tammet  
Institution:aInstitute of Environmental Physics, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
Abstract:Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2–3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032–3.2 cm2 V− 1 s− 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4–7.5 nm. The measurement noise of a fraction concentration is typically about 5 cm− 3 and the time resolution is about 10 min when measuring simultaneously both positive and negative ions in atmospheric air.
Keywords:Aerosols  Size distribution  Measurement  Electrical methods
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号