首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculations of the effects of angular momentum on the early evolution of Jupiter
Authors:Peter Bodenheimer
Institution:Max-Planck-Institut für Physik und Astrophysik, Föhringer Ring 6, 8000 München 40, Federal Republic of Germany
Abstract:The planet Jupiter is assumed to have formed as a subcondensation in the solar nebula. The initial phase of its evolution is one of hydrostatic contraction with radiative energy transport. Calculations of evolutionary sequences through this phase are presented, including the effects of angular momentum. The calculations are carried out in two space dimensions under the assumptions of axial symmetry, constancy of angular velocity on cylindrical surfaces about the rotation axis, a pressure-density relation given by the polytrope of index 3, conservation of angular momentum, and a homogeneous composition. The results show that under certain physically reasonable initial distributions of density and angular momentum the formation of a central planet and a rotating circumplanetary envelope is possible, while under assumptions a point of instability is reached that probably results in the breakup of the condensation by fission into two or more parts. The models are discussed with reference to the present angular momenta of Jupiter and its regular satellites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号