首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进U-Net卷积神经网络的储层预测
引用本文:陈康, 狄贵东, 张佳佳, 周游, 吴尧, 张广智. 基于改进U-Net卷积神经网络的储层预测[J]. CT理论与应用研究, 2021, 30(4): 403-416. DOI: 10.15953/j.1004-4140.2021.30.04.01
作者姓名:陈康  狄贵东  张佳佳  周游  吴尧  张广智
作者单位:1. 中国石油西南油气田分公司勘探开发研究院, 成都 610041;
基金项目:国家自然科学基金(42074136;41674130);中央高校基础研究业务费专项基金(18CX02061A);中国石油科技创新基金(2016D-5007-0301);中国石油科学研究与技术开发项目(2017D-3504)。
摘    要:传统的U-Net卷积神经网络大多存在深层网络梯度消失的问题。本文在U-Net卷积神经网络中加入残差模块,提出了一种改进U-Net卷积神经网络。残差模块保证了U-Net卷积神经网络在误差反向传播过程中梯度的存在,在一定程度上可以缓解梯度消失的问题。最后将改进U-Net卷积神经网络应用于实际储层预测中,实际数据测试结果表明基于改进U-Net卷积神经网络在岩性识别以及“甜点”预测上均能取得较好的效果。

关 键 词:卷积神经网络  U-Net  深度学习  岩性识别
收稿时间:2020-12-20

Reservoir Prediction Based on Improved U-Net Convolutional Neural Network
CHEN Kang, DI Guidong, ZHANG Jiajia, ZHOU You, WU Yao, ZHANG Guangzhi. Reservoir Prediction Based on Improved U-Net Convolutional Neural Network[J]. CT Theory and Applications, 2021, 30(4): 403-416. DOI: 10.15953/j.1004-4140.2021.30.04.01
Authors:CHEN Kang  DI Guidong  ZHANG Jiajia  ZHOU You  WU Yao  ZHANG Guangzhi
Affiliation:1. Exploration and Development Research Institute, Petrochina Southwest Oil & Gas field Company, Chengdu 610041, China;2. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China;3. Key Laboratory of Deep Oil and Gas Geology and Exploration, Ministry of Education, Qingdao 266580, China
Abstract:Most of the traditional U-Net convolutional neural networks have the problem that the gradient of the deep network disappears. In this paper, a residual module is added to the U-Net convolutional neural network, and an improved U-Net convolutional neural network is proposed. The residual module guarantees the existence of the gradient of the U-Net convolutional neural network in the process of error back-propagation, which can alleviate the problem of gradient disappearance to a certain extent. Finally, the improved U-Net convolutional neural network is applied to the actual reservoir prediction. The actual data measurement shows that the improved U-Net convolutional neural network can achieve better results in lithology identification and "Sweet Point" prediction. 
Keywords:convolutional neural network  U-Net  deep learning  lithology recognition
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《CT理论与应用研究》浏览原始摘要信息
点击此处可从《CT理论与应用研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号