首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of hydrocarbon-contaminated fluctuating groundwater on magnetic properties of shallow sediments
Authors:Nawrass N Ameen  Nicole Klueglein  Erwin Appel  Eduard Petrovský  Andreas Kappler  Carsten Leven
Institution:1. Department of Geosciences, University of Tübingen, 72074, Tübingen, Germany
2. Institute of Geophysics, Academy of Sciences of the Czech Republic, Bo?ní II/1401, 141 31, Praha 4, Czech Republic
Abstract:We investigate magnetic phase (trans)formation in the presence of petroleum hydrocarbons and its relation to bacterial activity, in particular in the zone of remediation driven fluctuating water levels at a former military air base in the Czech Republic. In a previous study an increase of magnetite concentration from the groundwater table towards the top of the groundwater fluctuation zone (GWFZ) was reported, however with limited reliability as there was no control on small-scale effects. To recognize statistically significant magnetic signatures versus depth, we obtained multiple sediment cores from three locations in January 2011 and April 2012, penetrating the unsaturated zone, the GWFZ and the uppermost one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic concentration variation versus depth was determined by measuring magnetic susceptibility (MS) and remanence parameters. Small-scale features were identified and eliminated by statistical processing of multiple cores. A trend of increasing MS values from the lowermost position of the groundwater table upward was verified and highest magnetic concentration was found at the top of the GWFZ. Magnetic mineralogy indicates that newly formed fine-grained magnetite in the single domain to small pseudo-single domain range is responsible for the MS enhancement confirming previous results. There is no correlation with the depth variation of hydrocarbon (HC) concentrations; however, total organic carbon is linked to MS and may represent a degradation product of HC that is bioavailable for microorganisms. Bacterial activity is likely responsible for magnetite formation as indicated by most probable number (MPN) results of iron-metabolizing bacteria. The comparison of our results with an earlier study conducted at the same site revealed that magnetic concentration clearly decreased since remediation was terminated in 2008, possibly due to dissolution of magnetite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号