Trapped solar and cosmogenic noble gas abundances in Apollo 15 and 16 deep drill samples |
| |
Authors: | D.D. Bogard L.E. Nyquist W.C. Hirsch D.R. Moore |
| |
Affiliation: | NASA Johnson Space Center, Houston, Texas, 77058, USA;Northrop Services, Inc., Houston, Texas, 77058, USA |
| |
Abstract: | Abundances and isotopic compositions of all the stable noble gases have been measured in 19 different depths of the Apollo 15 deep drill core, 7 different depths of the Apollo 16 deep drill core, and in several surface fines and breccias. All samples analyzed from both drill cores contain large concentrations of solar wind implanted gases, which demonstrates that even the deepest layers of both cores have experienced a lunar surface history. For the Apollo 15 core samples, trapped4He concentrations are constant to within a factor of two; elemental ratios show even greater similarities with mean values of4He/22Ne= 683±44,22Ne/36Ar= 0.439±0.057,36Ar/84Kr= 1.60±0.11·103, and84Kr/132Xe= 5.92±0.74. Apollo 16 core samples show distinctly lower4He contents,4He/22Ne(567±74), and22Ne/36Ar(0.229±0.024), but their heavy-element ratios are essentially identical to Apollo 15 core samples. Apollo 16 surface fines also show lower values of4He/22Ne and22Ne/36Ar. This phenomenon is attributed to greater fractionation during gas loss because of the higher plagioclase contents of Apollo 16 fines. Of these four elemental ratios as measured in both cores, only the22Ne/36Ar for the Apollo 15 core shows an apparent depth dependance. No unambiguous evidence was seen in these core materials of appreciable variations in the composition of the solar wind. Calculated concentrations of cosmic ray-produced21Ne,80Kr, and126Xe for the Apollo 15 core showed nearly flat (within a factor of two) depth profiles, but with smaller random concentration variations over depths of a few cm. These data are not consistent with a short-term core accretion model from non-irradiated regolith. The Apollo 15 core data are consistent with a combined accretion plus static time of a few hundred million years, and also indicate variable pre-accretion irradiation of core material. The lack of large variations in solar wind gas contents across core layers is also consistent with appreciable pre-accretion irradiation. Depth profiles of cosmogenic gases in the Apollo 16 core show considerably larger concentrations of cosmogenic gases below ~65 cm depth than above. This pattern may be interpreted either as an accretionary process, or by a more recent deposition of regolith to the upper ~70 cm of the core. Cosmogenic gas concentrations of several Apollo 16 fines and breccias are consistent with ages of North Ray Crater and South Ray Crater of ~50·106 and ~2·106 yr, respectively. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|