首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Systematics of the isotopic composition of sulfur in the oceans during the Phanerozoic and its implications for atmospheric oxygen
Authors:Heinrich D Holland
Institution:Department of Geological Sciences, Harvard University, Cambridge, Mass. 02138, U.S.A.
Abstract:Past treatments of the variation of δS34 in marine evaporites have either assumed a steady-state ocean or have invoked rather simplified ocean input-output models. This paper derives more completely the relationships between the parameters that influence the time variation of δS34 in ocean water and the relationship between δS34 in ocean water and net gains and losses of atmospheric oxygen due to the operation of the sulfur cycle. The lower and mid-Paleozoic are shown to have been periods of net gain of atmospheric oxygen by the operation of the sulfur cycle; the upper Paleozoic, particularly the Permian, a period of oxygen loss. It is difficult to relate these oxygen gains and losses to variations in the oxygen content of the atmosphere, because the oxygen flux due to the operation of the carbon cycle is approximately twice as large as the flux due to the operation of the sulfur cycle. Data for the organic carbon and sulfide content of sedimentary rocks of the Russian Platform suggest that a decrease in sulfide from the Paleozoic to the Mesozoic and Cenozoic Era was roughly balanced by an increase in the proportion of organic carbon; however, such data are insufficient to define the abundance of atmospheric oxygen during the Phanerozoic. Biologic data and a better understanding of controls on atmospheric Po2 are more likely to produce convincing evidence regarding variations of atmospheric oxygen in the past.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号