首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of conventional and Monte Carlo simulation-based probabilistic seismic hazard analyses for Shiraz city,southern Iran
Authors:Alireza Eskandarinejad  Hamid Zafarani  Mojtaba Jahanandish
Institution:1.Department of Civil and Environmental Engineering,Shiraz University,Shiraz,Iran;2.International Institute of Earthquake Engineering and Seismology (IIEES),Tehran,Iran
Abstract:Estimation of ground-motion amplitudes of different hazard levels is of paramount importance in planning of urban development of any metropolis. Such estimation can be computed through a probabilistic seismic hazard analysis (PSHA). This paper concentrates on the PSHA of an area located in Shiraz city, southern Iran. The area includes whole of Shiraz city (i.e., one of the largest and most populous cities of Iran) and its outskirts. Conventional and Monte Carlo simulation-based approaches are utilized to perform the PSHA of the studied area. Two areal seismic source models are delineated, and thence seismicity parameters of all zones associated with their corresponding uncertainties are computed. Uncertainties in ground-motion prediction are accounted for via three ground-motion prediction equations (GMPEs) within the logic tree framework. These GMPEs are applied to estimate bedrock ground shaking (Vs30?=?760 m/s) for several return periods (i.e., 75, 475, 975, and 2475 years). In general, the results of the two abovementioned PSHA approaches show relatively similar results. However, the Monte Carlo simulation-based approach overpredicts bedrock spectral accelerations at periods of 0.4–2.5 s compared to the conventional PSHA approach for return periods of 475, 975, and 2475 years.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号