首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nature’s pulsing paradigm
Authors:William E Odum  Eugene P Odum  Howard T Odum
Institution:1. Department of Environmental Science, University of Virginia, 22903, Charlottesville, Virginia
2. Insitute of Ecology, University of Georgia, 30601, Athens, Georgia
3. Enviromental Engineering Scienes, University of Florida, 32601, Gainesville, Florida
Abstract:While the steady state is often seen as the final result of development in nature, a more realistic concept may be that nature pulses regularly to make a pulsing steady stata—a new paradigm gaining acceptance in ecology and many other fields. In this paper we compare tidal salt marshes, tidal freshwater marshes, and seasonally flooded fresh-water wetlands as examples of pulsed ecosystems. Despite marked differences in species composition, biodiversity, and community structure, these wetland types are functionally similar because of the common denominator of water flow pulses. Often a period of high production alternates with a period of rapid consumption in these fluctuating water-level systems, a biotic pulsing to which many life histories, such as that of the wood stork, are adapted. Pulsing of medium frequency and amplitude often provides an energy subsidy for the community thus enhancing its productivity. The energy of large-scale pulses such as storms are usually dissipated in natural ecosystems with little harm to the biotic network; however, when seawalls, dikes, or stabilized sand dunes are constructed to confront these strong pulses, the whole ecosystem (and associated human structures) may be severly damaged when the barriers fail because too much of the storm energy is concentrated on them. The relationship between biologically mediated internal pulsing, such as plant-herbivore or predator-prey cycles, and physical external pulsing is discussed not only in wetlands but in other ecosystem types as well. An intriguing hypothesis is that ecosystem performance and species survival are enhanced when external and internal pulses are coupled. We suggest that if pulsing is general, then what is sustainable in ecosystems, is a repeating oscillation that is often poised on the edge of chaos.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号