首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution stages of large deep-seated landslides at the front of a subalpine meridional chain (Maritime-Alps, France)
Authors:Swann Zerathe  Thomas Lebourg
Institution:
  • Université de Nice Sophia-Antipolis, Centre National de la Recherche Scientifique (UMR 6526), Observatoire de la Côte d'Azur, Géoazur, 250 av Albert Einstein 06560 Valbonne, France
  • Abstract:Studying long term-evolution of gravitational slope evolution is a key to understanding deep-seated landslide processes. This paper deals with three large Deep-Seated Landslides (DSLs) at a front of a subalpine meridional chain, on the “La Marbrière” slope near the town of Grasse (Alpes-Maritimes, France). The geological framework controlling the stability and morphology of the DSLs is associated with thick and tamped Triassic layers of mudstone with gypsum overlain by highly faulted Jurassic limestone. Gravitational deformation affects the entire slope, involving a movement of about 1.1 × 108 m3 of rock material. It creates large disturbances in landscape morphology, such as scarps, counter-slope scarps, trenches and other typical gravitational morpho-structures. Geomorphological mapping coupled with deep electrical resistivity tomography (ERT) reveals a strong correlation between these morpho-structures and inherited brittle tectonic features. This observation relies on spatial and geometrical relations (on the surface and at the depth of more than 150 m, checked by ERT) between the most persistent fault and the gravitational morpho-structures. The specific distribution of the morpho-structures on the basis of their morphological typologies and variations in the stage of evolution of three DSLs provides an interpretation of their kinematics during the last 400 ka. It appears that soft substratums combined with inherited persistent anisotropies are key factors in the development of the DSLs. Indeed, outflow of mudstone due to the lithostatic pressure imposed by individual limestone compartments has led to general slope subsidence. Then, a progressive toppling of a rock mass may have led to the catastrophic rock collapse along bedding planes.The evolution of the DSLs can be divided into three distinct stages represented by three zones: a young collapse stage (zone 1), a pre-collapse stage (zone 2) and an old mature stage (> 400 ka, zone 3). As the DSLs occur on the same slope and in the same geological context, this area offers interesting perspectives for understanding factors controlling the long-term gravitational evolution of slopes.
    Keywords:Deep-seated landslides  Morpho-structures  Gravitational slope evolution  Electrical resistivity tomography  Inherited faults  Subalpine chains
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号