Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey |
| |
Authors: | Özgür Kişi |
| |
Affiliation: | Civil Engineering Department, Erciyes University, 38039 Kayseri, Turkey |
| |
Abstract: | This paper proposes the application of a conjunction model (neuro‐wavelet) for forecasting monthly lake levels. The neuro‐wavelet (NW) conjunction model is improved combining two methods, discrete wavelet transform and artificial neural networks. The application of the methodology is presented for the Lake Van, which is the biggest lake in Turkey, and Lake Egirdir. The accuracy of the NW model is investigated for 1‐ and 6‐month‐ahead lake level forecasting. The root mean square errors, mean absolute relative errors and determination coefficient statistics are used for evaluating the accuracy of NW models. The results of the proposed models are compared with those of the neural networks. In the 1‐month‐ahead lake level forecasting, the NW conjunction model reduced the root mean square errors and mean absolute relative errors by 87–34% and 86–31% for the Van and Egirdir lakes, respectively. In the 6‐month‐ahead lake level forecasting, the NW conjunction model reduced the root mean square errors and mean absolute relative errors by 34–48% and 30‐46% for the Van and Egirdir lakes, respectively. The comparison results indicate that the suggested model could significantly increase the short‐ and long‐term forecast accuracy. Copyright © 2009 John Wiley & Sons, Ltd. |
| |
Keywords: | discrete wavelet transform neural networks lake level forecast |
|
|