首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigating the impact of the Chi‐Chi earthquake on the occurrence of debris flows using artificial neural networks
Authors:Fi‐John Chang  Yen‐Ming Chiang  Wong‐Shuo Lee
Institution:Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan, Republic of China
Abstract:Debris flows have caused enormous losses of property and human life in Taiwan during the last two decades. An efficient and reliable method for predicting the occurrence of debris flows is required. The major goal of this study is to explore the impact of the Chi‐Chi earthquake on the occurrence of debris flows by applying the artificial neural network (ANN) that takes both hydrological and geomorphologic influences into account. The Chen‐Yu‐Lan River watershed, which is located in central Taiwan, is chosen for evaluating the critical rainfall triggering debris flows. A total of 1151 data sets were collected for calibrating model parameters with two training strategies. Significant differences before and after the earthquake have been found: (1) The size of landslide area is proportioned to the occurrence of debris flows; (2) the amount of critical rainfall required for triggering debris flows has reduced significantly, about half of the original critical rainfall in the study case; and (3) the frequency of the occurrence of debris flows is largely increased. The overall accuracy of model prediction in testing phase has reached 96·5%; moreover, the accuracy of occurrence prediction is largely increased from 24 to 80% as the network trained with data from before the Chi‐Chi earthquake sets and with data from the lumped before and after the earthquake sets. The results demonstrated that the ANN is capable of learning the complex mechanism of debris flows and producing satisfactory predictions. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:debris flows  the Chi‐Chi earthquake  artificial neural network
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号