首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Umbrella structure and channel-wall stoping in the Cambrian St. Roch Formation,Quebec Appalachians: significance for particle support mechanisms and turbulence development in hyper-concentrated sediment gravity flows
Authors:Reinhard Hesse  Christopher Fong
Institution:1. Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC, H3A 2A7, Canada
2. Department of Geo- and Environmental Sciences, Ludwig Maximilians University, Munich, 80333, Munich, Germany
3. Apt. 102, No.16, Lane 3297, Hongmei Road, Shanghai, 201103, China
Abstract:Umbrella structure is a newly recognized sedimentary structure associated with large platy clasts in resedimented boulder-bearing pebble conglomerate with a sandy matrix. It consists of a sand rim that lacks pebbles on parts or the entire underside of platy boulders, whereas on the upper side, pebbles are in direct contact with the boulders. The depositing processes were high- to hyper-concentrated sediment gravity flows in a submarine channel or canyon on the Cambrian continental slope of North America bordering the Iapetus Ocean. The structure occurs predominantly where clasts dip moderately in the down-current direction. Based on the association of the structure with slightly forward dipping slabs, it is proposed that these down-current dipping slabs may have been in the process of counter-clockwise rotation that was aborted and may have generated a pressure shadow on the underside enabling the inrush of fluid and the infiltration of sand into the anomalous low-pressure zone. The structure has implications for particle support mechanisms in high- to hyper-concentrated sedimentary gravity flows, in that it redirects attention to the much debated mechanism of dispersive pressure and alternatives. It provides an observable sediment structure that supports dispersive pressure which so far depended on experimental evidence and theoretical arguments alone. Vrolijk and Southard’s (1997) concept of a ‘laminar sheared layer’ is here for the first time interpreted as having an upward-moving ‘free-surface’ layer effect during deposition from hyper-concentrated flows. Channel-wall stoping involves unlithified turbiditic spillover sand in the levee sediment of the canyon wall that was washed out by the upper diluted parts of the high-concentration flows coming down the channel and leaving a niche in the wall that was filled with coarser channel-axis facies by the same flow (or later flows) when its aggradation reached the level of the niche. The contact between turbidite and pebble conglomerate occurs now more than 2 m laterally into the exposed channel wall. Channel-wall stoping tracks turbulence development in hyper-concentrated gravity flows.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号