首页 | 本学科首页   官方微博 | 高级检索  
     


Evolution of a classic sand ridge field: Maryland sector, North American inner shelf
Authors:DONALD J. P. SWIFT  MICHAEL E. FIELD
Affiliation:NOAA, Atlantic Oceanographic and Meteorological Laboratories, Virginia Key, Miami, Florida 33149, U.S.A.;U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, U.S.A.
Abstract:The ridge and swale topography of the Middle Atlantic Bight is best developed on the Delaware-Maryland inner shelf. Here sand ridges can be seen in all stages of formation. Several aspects of the ridge field are pertinent to the problem of ridge genesis. The first is ridge morphology. There is a systematic morphologic change from shoreface ridges through nearshore ridges to offshore ridges, which reflects the changing hydraulic regime. As successively more seaward ridges are examined, maximum side slope decreases, the ratio of maximum seaward slope to maximum landward slope decreases, and the cross-sectional area increases. These changes in ridge morphology with depth and distance from shore appear to be equivalent to the morphologic changes experienced by a single ridge during the course of the Holocene transgression. A second aspect is the change in bottom sediment characteristics that accompanies these large-scale morphologic changes. Megaripples, sand waves and mud lenses appear in the troughs between nearshore and offshore ridges. These changes indicate that the storm flows which maintain ridges are less frequently experienced in the deeper sector, and that the role of high-frequency wave surge becomes less important relative to the role of the mean flow component in shaping the sea-floor. A third aspect is the systematic relationship of grain size to topography. Grain size is 90° out of phase with topography, so that the coarsest sand lies between the axis of the landward trough and the ridge crest, while the finest sand lies between the ridge crest and the axis of the seaward trough. This relationship is characteristic of large-scale bedforms. Finally, flow was measured and transport calculated on the same ridge during a one-month period (November 1976). Threshold was exceeded only during storm events. Mean transport was southerly and a little seaward with respect to both the ridge crest and the shoreline. These flow measurements are in conformity with the pattern of smaller bedforms. A 43-year time series of bathymetric change for this ridge reveals a systematic pattern of landward flank erosion, seaward flank deposition, and seaward crest migration. Sand ridges are considered the consequence of constructive feedback between an initial topography and the resulting distribution of bottom shear stress. The relationship between grain size and topography supports this model, but does not account directly for the oblique angle of the ridge with respect to the coastline. This feature may be due to a more rapid alongshore migration rate of the inshore edge of the ridge than the offshore edge, and the relationship between this migration rate, and the rate of shoreface retreat.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号