首页 | 本学科首页   官方微博 | 高级检索  
     


Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy
Authors:Michael J. Dwyer  Edward G. Patton  Roger H. Shaw
Affiliation:(1) Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, U.S.A
Abstract:The output of a large-eddy simulation was used to study the terms ofthe turbulent kinetic energy (TKE) budget for the air layers above andwithin a forest. The computation created a three-dimensional,time-dependent simulation of the airflow, in which the lowest third ofthe domain was occupied by drag elements and heat sources to representthe forest. Shear production was a principal source of TKE in theupper canopy, diminishing gradually above tree-top height and moresharply with depth in the canopy. The transfer of energy to subgridscales (dissipation) was the main sink in the upper part of the domainbut diminished rapidly with depth in the canopy. Removal ofresolved-scale TKE due to canopy drag was extremely important,occurring primarily in the upper half of the forest where the foliagedensity was large. Turbulent transport showed a loss at the canopytop and a gain within the canopy. These general features have beenfound elsewhere but uncertainty remains concerning the effects ofpressure transport. In the present work, pressure was calculateddirectly, allowing us to compute the pressure diffusion term. Wellabove the canopy, pressure transport was smaller than, and opposite insign to, the turbulent transport term. Near the canopy top andbelow, pressure transport acted in concert with turbulent transport toexport TKE from the region immediately above and within the uppercrown, and to provide turbulent energy for the lower parts of theforest. In combination, the transport terms accounted for over half ofthe TKE loss near the canopy top, and in the lowest two-thirds of thecanopy the transport terms were the dominant source terms in thebudget. Moreover, the pressure transport was the largest source ofturbulent kinetic energy in the lowest levels of the canopy, beingparticularly strong under convective conditions. These resultsindicate that pressure transport is important in the plant canopyturbulent kinetic energy budget, especially in the lowest portion ofthe stand, where it acts as the major driving force for turbulentmotions.
Keywords:Turbulent kinetic energy  Large-eddy simulation  Canopy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号