首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy)
Authors:Paolo Boncio  Giusy Lavecchia  Bruno Pace
Institution:(1) Geodynamics and Seismogenesis Laboratory, Dipartimento di Scienze della Terra, Università ldquoG. d'Annunziordquo – Campus Universitario, 66013 Chieti, Italy
Abstract:Geology-based methods for Probabilistic Seismic Hazard Assessment (PSHA) have been developing in Italy. These methods require information on the geometric, kinematic and energetic parameters of the major seismogenic faults. In this paper, we define a model of 3D seismogenic sources in the central Apennines of Italy. Our approach is mainly structural-seismotectonic: we integrate surface geology data (trace of active faults, i.e. 2D features) with seismicity and subsurface geological–geophysical data (3D approach). A fundamental step is to fix constraints on the thickness of the seismogenic layer and deep geometry of faults: we use constraints from the depth distribution of aftershock zones and background seismicity; we also use information on the structural style of the extensional deformation at crustal scale (mainly from seismic reflection data), as well as on the strength and behaviour (brittle versus plastic) of the crust by rheological profiling. Geological observations allow us to define a segmentation model consisting of major fault structures separated by first-order (kilometric scale) structural-geometric complexities considered as likely barriers to the propagation of major earthquake ruptures. Once defined the 3D fault features and the segmentation model, the step onward is the computation of the maximum magnitude of the expected earthquake (M max). We compare three different estimates of M max: (1) from association of past earthquakes to faults; (2) from 3D fault geometry and (3) from geometrical estimate lsquocorrectedrsquo by earthquake scaling laws. By integrating all the data, we define a model of seismogenic sources (seismogenic boxes), which can be directly used for regional-scale PSHA. Preliminary applications of PSHA indicate that the 3D approach may allow to hazard scenarios more realistic than those previously proposed.
Keywords:active fault  earthquake  maximum expected magnitude  rheology  seismic hazard  seismogenic source  segmentation  structural geology
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号