首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spathian to Aegean (upper Lower Triassic to lower Middle Triassic) carbon isotope stratigraphy constrained by the conodont biostratigraphy of carbonates on top of a mid-oceanic seamount formed in the Panthalassic Ocean
Authors:Thuy Thi Nhu Ha  Takumi Maekawa  Hideko Takayanagi  Yasufumi Iryu
Institution:1. Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai, Japan;2. Osaka Museum of Natural History, Osaka, Japan
Abstract:The Taho Formation in western Shikoku Island, Japan, consists of Triassic carbonates that formed on a seamount in the Panthalassic Ocean. In order to investigate the stratigraphy and paleoceanography of this carbonate succession, we analyzed the biostratigraphy and chemostratigraphy of a 17.6 m-thick section of the upper Taho Formation at the stratotype area in Tahokamigumi, Seiyo City. This section comprises bioclastic limestone containing Triassic bivalves, ammonoids, and conodonts. We recognized six conodont zones (in ascending order): the Novispathodus pingdingshanensis, Novispathodus brevissimus, Triassospathodus symmetricus, Triassospathodus homeri, Chiosella timorensis, and Magnigondolella cf. alexanderi zones. Thus, the studied carbonate succession is latest Smithian to Aegean in age. A δ13C profile of this section shows elevated values during the lowest Spathian followed by a gradual negative excursion, a subsequent positive excursion near the Spathian–Aegean boundary, and relatively constant values during the Aegean. The characteristic series of negative and positive excursions correlates with other δ13C records for this period, including the peak of the upper Smithian–lowest Spathian positive excursion (P3), lower to middle Spathian negative excursion (N4), and middle Spathian–lowest Aegean positive excursion (P4). This represents a new high-resolution Spathian–Aegean δ13C record of the Panthalassic Ocean, for which ages are constrained by conodont biostratigraphy. The Taho δ13C profile exhibits a consistent positive offset of ~2 ‰ as compared with those from other regions (i.e., mostly in the Tethyan Ocean). This can be explained by preferential removal of 12C from seawater during photosynthesis and calcification by marine organisms over the platform, and/or the relatively high δ13C values of dissolved inorganic carbon in the Panthalassic Ocean due to less influence of 12C-enriched terrestrial waters and high marine organic production/burial as compared with the more restricted Tethyan Ocean.
Keywords:Anisian  carbon isotopes  chemostratigraphy  conodont biostratigraphy  limestone  Olenekian  Panthalassic Ocean  Taho  Triassic
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号