首页 | 本学科首页   官方微博 | 高级检索  
     


Heat flow near obstacles in the solar convection zone
Authors:H. C. Spruit
Affiliation:(1) The Astronomical Institute at Utrecht, Zonnenburg 2, Utrecht, The Netherlands
Abstract:Disturbances in the heat flow in the solar convection zone are calculated with a turbulent thermal diffusion coefficient based on a mixing length approximation. As a consequence of the radiative boundary condition at the surface and the strong increase of the diffusion coefficient with depth, the convection zone resembles a thermally superconducting shell enclosed between a thin surface layer and an interior core of low thermal conductivity. Thermal disturbances originating in the convection zone do not penetrate into the interior, and penetrate only weakly through the solar surface. A thermally isolating obstacle buried entirely in the convection zone casts a lsquoshadowrsquo of reduced temperature at the solar surface; the brightening surrounding this shadow is undetectable. The shadow is weak unless the object is located close to the surface (less than 2000 km). Assuming a sunspot to be an area of reduced thermal conductivity which extends a finite depth into the convection zone, the heat flow around this obstacle is calculated. The heat flux blocked below the spot (lsquomissing fluxrsquo) spreads over a very extended area surrounding the spot. The brightening corresponding to this lsquomissing fluxrsquo is undetectable if the reduction of the thermal conductivity extends to a depth greater than 1000 km. It is concluded that no effect other than a decrease of the convective efficiency is needed to explain the temperature change observed at the solar surface in and around a sunspot. The energy balance is calculated between magnetic flux tubes, oriented vertically in the solar surface, (magnetic elements in active regions and the quiet network) and their surroundings. Near the visible surface radiation enters the tube laterally from the surrounding convection zone. The heating effect of this influx is important for small tubes (less than a few arcseconds). Due to this influx tubes less than about 1Prime in diameter can appear as bright structures irrespective of the amount of heat conveyed along the tube itself. Through the lateral influx, small tubes such as are found in the quiet network act as little lsquoleaksrsquo in the solar surface through which an excess heat flux escapes from the convection zone.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号