首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mesoscale predictability of moist baroclinic waves: Variable and scale-dependent error growth
Authors:Naifang Bei  Fuqing Zhang
Institution:1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
2. Department of Meteorology, the Pennsylvanian State University, University Park, Pennsylvania, 16802, USA
Abstract:This study seeks to quantify the predictability of different forecast variables at various scales through spectral analysis of the difference between perturbed and unperturbed cloud-permitting simulations of idealized moist baroclinic waves amplifying in a conditionally unstable atmosphere. The error growth of a forecast variable is found to be strongly associated with its reference-state (unperturbed) power spectrum and slope, which differ significantly from variable to variable. The shallower the reference state spectrum, the more spectral energy resides at smaller scales, and thus the less predictable the variable since the error grows faster at smaller scales before it saturates. In general, the variables with more small-scale components (such as vertical velocity) are less predictable, and vice versa (such as pressure). In higher-resolution simulations in which more rigorous small-scale instabilities become better resolved, the error grows faster at smaller scales and spreads to larger scales more quickly before the error saturates at those small scales during the first few hours of the forecast. Based on the reference power spectrum, an index on the degree of lack (or loss) of predictability (LPI) is further defined to quantify the predictive time scale of each forecast variable. Future studies are needed to investigate the scale- and variable-dependent predictability under different background reference flows, including real case studies through ensemble experiments.
Keywords:predictability  baroclinic waves  error growth  mesoscale
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号