首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure and evolution of isolated giant gaseous protoplanets
Authors:William M DeCampli  AGW Cameron
Institution:Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
Abstract:The structure and evolution of isolated giant gaseous protoplanets in the mass range 0.3 to 4.5 Jovian masses is investigated. Under the assumptions of the calculations, the following properties are found: (1) The central region of protoplanets of mass less than about 1 Jovian mass is, at some evolutionary epoch, thermodynamically favorable to the liquification of major interstellar grain constituents. Grains in this region can grow and infall to form a planetary core in tens to hundreds of years. (2) All protoplanets studied are convective through-out most of their interior. This property is in contrast to Bodenheimer's fully radiative proto-Jupiter models. We attribute the difference to the use of improved opacities. The presence of convection has at least two important consequences. First, it can mix grains into the central regions during planetary core formation, possibly allowing a core of mass ~ 1 Earth mass to grow. Second, convection can transport angular momentum outward as the protoplanet quasi-statically contracts. (3) The thermal contraction time depends sensitively on the surface opacity (T < 200°K). This opacity is uncertain within a factor of 5. The contraction times imply that some protoplanets can remain stable against tidal disruption by the proto-Sun and solar nebula during core-forming stages.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号