On inhomogeneous scattering models of Titan's atmosphere |
| |
Authors: | Morris Podolak Lawrence P. Giver |
| |
Affiliation: | Ames Research Center, NASA Space Science Division, Moffett Field, California 94035, USA |
| |
Abstract: | The spectrum of Titan from 4800 to 11 000 Å has many CH4 absorption bands which cover a range of intensities of several orders of magnitude. Yet even the strongest of these bands in Titan's spectrum has considerable residual central intensity. Some investigators have concluded that these strong CH4 bands must be highly saturated, but recent laboratory measurements of the bands made at room temperature show that curve-of-growth saturation is very small. At the presumed low pressures and temperatures in Titan's atmosphere, we show that saturation is very dependent on the band model parameters. However, in either a simple reflecting layer model or in a homogeneous scattering model saturation cannot be the principal cause of the filling in of these strong CH4 bands if our best estimates of the band model parameters are correct. We find that an inhomogeneous scattering model atmosphere with fine “Axel dust” above most ot the CH4 gas is needed to fill in the band centers. The calculated spectrum of one particular model of this class is compared to observations of Titan. Our essential conclusion is that Titan does have most of its scattering particles above most of the CH4 gas which has an abundance of at least 2 km-am. This large abundance of CH4 is necessary to produce the 6420-Å feature recently discovered in Titan's spectrum. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|