首页 | 本学科首页   官方微博 | 高级检索  
     


P‐O‐rich sulfide phase in CM chondrites: Constraints on its origin on the CM parent body
Authors:Ai‐Cheng Zhang  Shoichi Itoh  Hisayoshi Yurimoto  Wei‐Biao Hsu  Ru‐Cheng Wang  Lawrence A. Taylor
Affiliation:1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China;2. Lunar and Planetary Science Institute, Nanjing University, Nanjing, China;3. Department of Natural History Sciences, Hokkaido University, Sapporo, Japan;4. Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China;5. Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA
Abstract:CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P‐O‐rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P‐O‐rich sulfide is a polycrystalline aggregate of nanometer‐size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type‐I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca‐carbonate are much less altered. This P‐O‐rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of ?22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron‐diffraction patterns imply that the P‐O‐rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P‐O‐rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low‐temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type‐I chondrules and absence in type‐II chondrules. The textural relations of the P‐O‐rich sulfide and other low‐temperature minerals reveal at least three episodic‐alteration events on the parent body of CM chondrites (1) formation of P‐O‐rich sulfide during sulfur‐rich aqueous alteration of P‐rich FeNi metal, (2) formation of Ca‐carbonate during local carbonation, and (3) alteration of P‐O‐rich sulfide and formation of tochilinite during a period of late‐stage intensive aqueous alteration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号