首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机分类算法的湖泊水质评价研究
引用本文:徐红敏,杨天行. 基于支持向量机分类算法的湖泊水质评价研究[J]. 吉林大学学报(地球科学版), 2006, 36(4): 570-573
作者姓名:徐红敏  杨天行
作者单位:1.北京石油化工学院 数理部, 北京 102617;2.吉林大学 地球探测科学与技术学院,长春 130026
基金项目:国家“973”项目(G1999045705)
摘    要:支持向量机(SVM)是由Vapnik等人提出的建立在统计学习理论基础上的一种小样本机器学习方法,最初用于解决二分类问题。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题。又由于采用了核函数思想,使它将非线性问题转化为线性问题来解决,降低了算法的复杂度。利用支持向量机多类分类算法,构建湖泊水环境评价模型。实验结果表明,该方法能够正确地对湖泊水环境质量进行分类评价。

关 键 词:湖泊  支持向量机  分类算法  水质评价  
文章编号:1671-5888(2006)04-0570-04
收稿时间:2006-03-14
修稿时间:2006-03-14

Evaluation of Lake Water Quality Based on Classification Algorithms of Support Vector Machines
XU Hong-min,YANG Tian-xing. Evaluation of Lake Water Quality Based on Classification Algorithms of Support Vector Machines[J]. Journal of Jilin Unviersity:Earth Science Edition, 2006, 36(4): 570-573
Authors:XU Hong-min  YANG Tian-xing
Affiliation:1.Department of Mathematics and Physics, Beijing Institute of Petrochemical Technology, Beijing 102617,China;2.College of GeoExploration Science and Technology, Jilin University, Changchun 130026,China
Abstract:Support vector machines(SVM) were developed from the machine learning theory of small samples based on statistical learning theory(SLT) by Vapnik et al,which were originally designed for binary classification problems.It can solve small-sample learning problems better by using structural risk minimization in place of experiential risk minimization.Moreover,SVM can convert a nonlinear learning problem into a linear learning problem in order to reduce the algorithm complexity by using the kernel function concept.A multi-class classification method of SVM is applied to lake water quality assessment.A case study shows that the method is reliable in the classification and evaluation of lake water quality.
Keywords:lake water environment  support vector machines  classification algorithms  water quality evaluation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(地球科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(地球科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号