首页 | 本学科首页   官方微博 | 高级检索  
     检索      

1961—2019年长江中下游区域性干旱过程及其变化
引用本文:张强,谢五三,陈鲜艳,翟盘茂,吴必文,段居琦.1961—2019年长江中下游区域性干旱过程及其变化[J].气象学报,2021,79(4):570-581.
作者姓名:张强  谢五三  陈鲜艳  翟盘茂  吴必文  段居琦
作者单位:国家气候中心,北京,100081;安徽省气候中心,合肥,230031;中国气象科学研究院,北京,100081
基金项目:国家重点研发计划(2017YFC1502402)、安徽省自然科学基金(1908085MD109)、安徽省重点研究和开发计划(201904a07020099)
摘    要:客观识别区域性干旱过程,评估其强度是开展精准监测、评估干旱影响业务的基础.基于长江中下游地区502个国家级气象站1961—2019年逐日气温、降水资料以及1971—2019年干旱受灾面积,运用气象干旱综合指数(MCI)及区域性干旱过程识别方法,识别出长江中下游地区126次区域性干旱过程,干旱过程的次数随着持续天数增多呈...

关 键 词:区域性干旱过程  识别  评估  MCI  长江中下游
收稿时间:2020/12/30 0:00:00
修稿时间:2021/4/1 0:00:00

Regional drought process and its variation characteristics in the middle-lower reaches of the Yangtze River from 1961 to 2019
ZHANG Qiang,XIE Wusan,CHEN Xianyan,ZHAI Panmao,WU Biwen,DUAN Juqi.Regional drought process and its variation characteristics in the middle-lower reaches of the Yangtze River from 1961 to 2019[J].Acta Meteorologica Sinica,2021,79(4):570-581.
Authors:ZHANG Qiang  XIE Wusan  CHEN Xianyan  ZHAI Panmao  WU Biwen  DUAN Juqi
Institution:1.National Climate Centre,Beijing 100081,China2.Anhui Climate Center,Hefei 230031,China3.Chinese Academy of Meteorological Sciences,Beijing 100081,China
Abstract:Objectively identifying regional drought processes and assessing their intensity is the operational basis for conducting accurate and detailed monitoring and assessment of drought impacts. Based on daily temperature and precipitation data collected at 502 national meteorological stations from 1961 to 2019 and the historical drought disaster information from 1971 to 2019 in the middle-lower reaches of the Yangtze River, 126 regional drought processes in the middle-lower reaches of the Yangtze River were identified using the meteorological drought composite index (MCI) and regional drought process identification method. The number of drought processes decreases obviously with the increase of duration days, and the determination coefficient reaches 0.89. From 1961 to 2019, there were 6 extremely strong regional drought processes, 19 strong regional drought processes and 38 sub strong regional drought processes in the middle-lower reaches of the Yangtze River, and the remaining 63 were general regional drought processes. The variation trend of duration days, average intensity, average affected area and comprehensive intensity index of regional drought processes present different forms. The distribution of annual drought days in the middle-lower reaches of the Yangtze River is generally "more in the north than in the south, more in the plain than in the mountainous area", and the trend shows a pattern of "increasing in the northwest and decreasing in the southeast". The variation trend of drought days is consistent with that of drought affected area, and the correlation coefficient reaches 0.66. According to the monitoring and assessment of typical regional drought processes, there is an obvious positive correlation between the comprehensive drought intensity index and the number of stations that experienced drought. The stronger the comprehensive drought intensity index, the larger the number of stations experiencing various levels of drought. The number of drought days in different regions is consistent with the size of drought disaster area. The more drought days, the greater the drought disaster area. In general, results of identification and assessment of regional drought processes are consistent with drought disaster information. The method of identification and assessment of regional drought processes can well identify the regional drought process, and monitor and assessment the drought process from the perspectives of duration days, average intensity, average affected area and comprehensive drought intensity.
Keywords:Regional drought process  Identification  Assessment  Meteorological drought composite index  the middle-lower reaches of the Yangtze River
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《气象学报》浏览原始摘要信息
点击此处可从《气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号