Abstract: | The fast onset of a substorm—a substorm “explosion”—is usually associated with the moment of stability loss of the magnetoplasma equilibrium in the geomagnetic tail. The origination of such a process either from the near-Earth part of the plasma sheet or from its remote part, which is highly stretched into the tail, is now being studied theoretically and verified experimentally (at the present time, in the THEMIS project). In the first case, the resulting disturbance must have the form of a ballooning mode; in the second case, of tearing perturbation. However, in both cases, this stability loss, i.e., a quick breakdown in the balance, replacing the slow quasi-static evolution of configuration, can only occur as a nonlinear process. Taking into account the specific properties of the configuration and possible disturbances in it, we indicate why such a process cannot be the previously proposed “substorm detonation.” It is shown that a suitable mathematical model is a nonlinear dynamical bifurcation occurring on a small time scale, with a delay relative to the moment of passing the marginally stable state. |