首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using multiple portable/wearable devices for enhanced misalignment estimation in portable navigation
Authors:Medhat Omr  Jacques Georgy  Aboelmagd Noureldin
Institution:1.InvenSense Inc.,Calgary,Canada;2.Department of Electrical and Computer Engineering,Queen’s University,Kingston,Canada;3.Department of Electrical and Computer Engineering,Royal Military College of Canada,Kingston,Canada
Abstract:Global navigation satellite system (GNSS), such as global positioning system (GPS), has been widely used for vehicular and outdoor navigation. Accuracy is one, among many, of the advantages of using GNSS in the open sky. However, GNSS finds difficulty in achieving similar results in portable navigation, where users spend most of their time indoors or in urban canyons, places where GNSS signals suffer from multipath error or signal blockage. One of the most common solutions for providing location services in such challenging environments is integrating GNSS with inertial sensors, such as accelerometers and gyroscopes. However, the arbitrary orientation of the portable device can present a more difficult challenge when using inertial sensors for portable navigation. In order to obtain a navigation solution using inertial sensors, an accurate heading estimation is required. Resolving the heading misalignment angle between the portable navigation device and the moving platform, such as using the device while walking or in a vehicle while driving, is critical to obtaining an accurate heading estimation. We present a solution for resolving the misalignment between the portable device and the moving platform, which exploits multiple portable devices like smartphones or tablets and/or smart wearable devices such as smart watches, smart glasses, and/or smart fitness and activity trackers/monitors. Several real field test experiments using portable devices were conducted to examine the performance of the proposed method. Results show how a portable navigation solution can be improved by further enhancing misalignment estimation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号